# vitr::prime™ Ultra-Low Attachment, U-Bottom, 96-Well Plate



Premium U-bottom cell culture plate for 3D spheroids.



## Premium low-attachment surface coating for 3D cultures

Excellent for spheroid generation and culture, organoid and tumoroid cultures, and suspension cultures.



#### Reduced cell adhesion

Unparalleled surface coating that prevents cell attachment, supporting consistent and rapid spheroid formation.



#### **Uniform surface treatment**

Homogeneous coating across wells that ensures experimental reproducibility and enables high-throughput and drug-screening applications.



### **Supports automated imaging systems**

Works seamlessly with imaging platforms including, Incucyte, Molecular Devices, and more.

The VitroPrime™ Ultra-Low Attachment, U-bottom, 96-Well Plate features a unique surface treatment that prevents cell adhesion, enabling spheroid formation and the creation of advanced 3D models, such as organoids and tumoroids. Designed with a uniform surface coating across wells, the VitroPrime™ Ultra-Low Attachment Plate ensures experimental consistency that enables drug screening and high-throughput applications.

When used with the VitroGel® hydrogel system, achieve an easier and more consistent spheroid invasion.

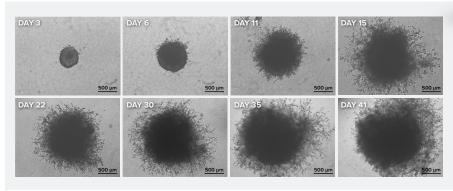





Figure 1. Spheroid invasion assay using the VitroPrime™ Ultra-Low Attachment Plate and VitroGel® Hydrogel Matrix.

U87-MG glioblastoma cells were resuspended in basal medium with 10% fetal bovine serum. Twenty microliters (20  $\mu\text{L})$  of cell suspension were added to the VitroPrime  $^{\text{\tiny{M}}}$  Ultra-low Attachment, U-bottom, 96-Well Plate. The cultures were incubated overnight at 37°C to allow spheroid formation. VitroGel Hydrogel Matrix was combined with serum, and 40  $\mu\text{L}$  of the mixture was added to the spheroid, followed by a 15-minute incubation at room temperature. The images were obtained with the Zeiss Microscope at 2.5X magnification.

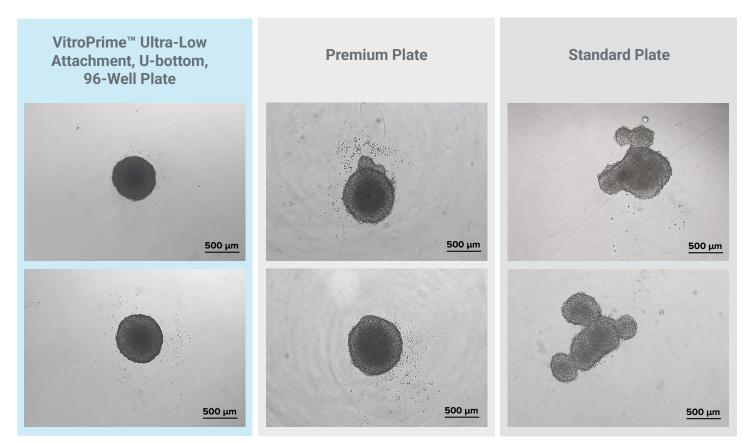



Figure 2. Comparison of spheroid formation between VitroPrime™ Ultra-Low Attachment, U-Bottom, 96-Well Plate and 2 commercially available ultra-low attachment plates. The glioblastoma cells in the VitroPrime Ultra-Low Attachment, U-bottom, 96-well Plate formed a single spheroid, with no residual cells observed on the edges of the plate (Fig. 2, first column). However, cells in the commercially available plates failed to form round-shaped spheroids, which is crucial when performing spheroid invasion assays (Fig. 2, second and third columns).

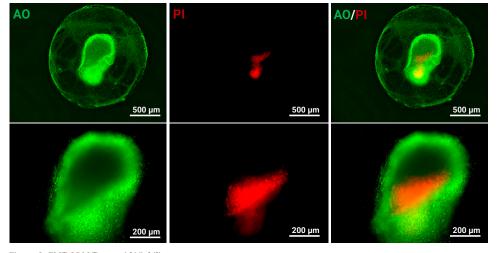



Figure 3. EMT GBM Tumoroid Viability

U87-MG GBM cells (1 x 106 cells/mL) were resuspended in basal medium with the supplement system. Twenty microliters (20 µL) of cell suspension were added to the VitroPrime™ Ultra-Low Attachment, U-bottom, 96-Well Plate. The cultures were incubated overnight at 37 °C for spheroid formation. The hydrogel (40 µL) was added to the wells and incubated at room temperature for 15 minutes. A 100 µL of basal medium with supplements was added on top of the hydrogel. The cultures were incubated overnight, and the medium was changed every 2-3 days. After two weeks, the tumoroids were then subjected to Cyto3D® reagent staining and carefully transferred to the VitroPrime™ Spread- Attach 96-Well Plate. Acridine orange (AO) staining indicates the presence of live cells within the tumoroid as shown in green. Propidium iodide (PI; in red) stains for dead cells. Images were taken with the Keyence BZX microscope system at 4X (top) and 10X (bottom) magnifications.

| Product                                                                           | Cat No.       |
|-----------------------------------------------------------------------------------|---------------|
| VitroPrime™ Ultra-Low<br>Attachment Plate,<br>U-Bottom, 96-Well, 8 pack           | VP-ULA96U-8   |
| VitroPrime™ Ultra-Low<br>Attachment Plate,<br>U-Bottom, 96-Well,<br>8 pack x 5    | VP-ULA96U-8X5 |
| Read the Application Note: thewellbio.com/ evaluating-spheroid- invasion-app-note |               |

